

The Fourier Transform

- A transform takes one function (or signal) and turns it into another function (or signal).
- Continuous Fourier and Inverse Fourier Transforms:

$$H(f) = \int_{-\infty}^{\infty} h(t) e^{2\pi i f t} dt$$
$$h(t) = \int_{-\infty}^{\infty} H(f) e^{-2\pi i f t} df$$

• Note that the transforms contain complex numbers.

% FF1 Example	
% Revision 3.0 Curt N	Jelson 1/28/2020
% Creates functions of	f time and explores various fft implementations
clear all;	
clear plot;	
% Calculate the numb	er of time samples (1000 in this case).
% Calculate the numberstart_time = 0;	er of time samples (1000 in this case).
% Calculate the numb start_time = 0; end_time = .01;	er of time samples (1000 in this case). % 10 milli-seconds
% Calculate the numb start_time = 0; end_time = .01; delta_time = 1e-5;	er of time samples (1000 in this case). % 10 milli-seconds % 10 micro-seconds

Matlab Code % The sampling rate is 1/delta_time or 100,000 samples/second sampling_rate = 1/delta_time; % Next create the time domain function with a frequency of 200Hz, resulting % in a period of 1/frequency or 5 milli-seconds. freq = 200; period = 1/freq; time_function = sin(2*pi*freq*time_vec); % Since we are sampling from 0 to 10ms, we should see 2 cycles plot(time_vec,time_function); title('Time Function with 1000 Data Points'); ylabel('volts'); xlabel('time - seconds'); grid on; pause;

Matlab Code

% Now do an FFT on this time domain function % fft_results contain a complex number pair for each sample fft_results = fft(time_function);

% Create the x axis for frequencies starting at the DC value (0 Hz) dc_value = 0;

% We only need to plot the first half of the frequencies because the fft returns % the same data folded over on itself at maxfreq/2

% Frequency spacing is the sampling rate / by the number of samples and is % the frequency resolution on the x axis.

freq_spacing = sampling_rate/number_time_samples;

% Maximum frequency for the fft is (sampling rate/2) – freq_spacing freq_max = (sampling_rate/2) - freq_spacing;

FFT Matlab Code % Next, create the x-axis points (0 - 49,900 in increments of 100Hz) freq_plot_xaxis = dc_value:freq_spacing:freq_max; % This results in (number of time samples/2) or 500 frequencies number_freq_samples = number_time_samples/2; % The magnitude of the fft must be computed from the complex fft_results magnitude = abs(fft_results); % Normalize magnitude by dividing by the number of frequency samples nor_magnitude = magnitude/number_freq_samples; % Plot the first 30 frequencies using red circles plot(freq_plot_xaxis(1:30),nor_magnitude(1:30),'ro'); puse;

