
1
Engr325, Fourier Series and Transforms

Fourier Series and
Fourier Transforms

Engr325

Instrumentation

Dr Curtis Nelson

This Lecture

• Fourier series.
• Fourier transforms.

2
Engr325, Fourier Series and Transforms

A/D Converter Board

http://www.mstarlabs.com/dataacquisition/840/840spec.html

Instrumentation System

Temperature, Light, Displacement,
Position, Vibration, Strain, Angle,
Velocity, Acceleration, Flow rate,
Pressure, Viscosity, Heart Rate, Etc.

Transducer

Analog
output

3
Engr325, Fourier Series and Transforms

Digital Acquisition System

• Computers are nearly always in the middle of any
instrumentation system to provide a complete interface
with analog sensors and output devices.

Signal Processing

• The big question now is: “What information do we want to
extract from the signal that we have acquired?”
– Amplitude.
– Frequency.
– Timing.
– Phase.
– Etc.

• Let’s focus on Frequency today.

4
Engr325, Fourier Series and Transforms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-6

-4

-2

0

2

4

6

8

5*sin (2p4t)

Amplitude = 5

Frequency = 4 Hz

Seconds

A Sine Wave

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-6

-4

-2

0

2

4

6

8

5*sin(2p4t)

Amplitude = 5

Frequency = 4 Hz

Sampling rate = 256
samples/second

Sampling duration
= 1 second

A Sampled Sine Wave Signal

Seconds

5
Engr325, Fourier Series and Transforms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
sin(2p8t), SR = 8.5 Hz

An Undersampled Signal

The Nyquist Frequency

• The Nyquist frequency is equal to one-half of the sampling
frequency.

• The Nyquist frequency is the highest frequency that can be
measured in a signal.

• In other words – you MUST sample at least twice as fast as
the fastest frequency in the signal you wish to capture.

• And, how do you determine what that maximum frequency is?
Or more generally, how do you determine all of the
frequencies comprising the signal you are capturing?

• We will answer the last question by going in reverse, i.e. we
will learn how to create a signal composed of multiple
frequencies.

6
Engr325, Fourier Series and Transforms

Fourier Series
• Fourier Series (English pronunciation: /ˈfɔərieɪ/) is a way to

represent a wave-like function as the sum of simple sine
waves. More formally, it decomposes any periodic function or
periodic signal into the sum of a (possibly infinite) set of sine
and cosine functions.

Alternative Mathematical Representations

https://en.wikipedia.org/wiki/Help:IPA_for_English

7
Engr325, Fourier Series and Transforms

Fourier Series

• Introduction
– https://www.youtube.com/watch?v=UKHBWzoOKsY

• Frequency filtering
– https://www.youtube.com/watch?v=JndvN1ngSi4

• Matlab demo

Fourier Series Symmetry

• If f(t) = f(-t), then f(t) is said to be an
even function and all the bn terms = 0.
In other words, f(t) is mirrored about
the y-axis, like the cosine function.

• If f(t) = -f(-t), then f(t) is said to be an
odd function and all an terms
(including the dc value) = 0. The sine
function is an example.

https://www.youtube.com/watch?v=UKHBWzoOKsY
https://www.youtube.com/watch?v=JndvN1ngSi4

8
Engr325, Fourier Series and Transforms

Fourier Series Example

• Find the Fourier Series for the following waveform. Set Vm = 1 and
T = 2p. See the Matlab file fourier_series_square.m on the course
web page for implementation.

! " = $
%&'

(4
+ sin(")

The Fourier Transform

• A transform takes one function (or signal) and turns it into
another function (or signal).

• Continuous Fourier and Inverse Fourier Transforms:

• Note that the transforms contain complex numbers.

() ()

() ()ò
ò
¥

¥-

-

¥

¥-

=

=

dfefHth

dtethfH

ift

ift

p

p

2

2

9
Engr325, Fourier Series and Transforms

• Because we have computers in the mix and deal with discrete
samples of information, mathematicians developed the
Discrete Fourier Transform (DFT):

• The DFT is also complex in nature.

The Discrete Fourier Transform

å

å
-

=

-

-

=

=

=

1

0

2

1

0

2

1 N

n

Nikn
nk

N

k

Nikn
kn

eH
N

h

ehH

p

p

Fast Fourier Transform

• You have probably heard about the The Fast Fourier
Transform (FFT). The FFT is an efficient algorithm for
performing a Discrete Fourier Transform.

• The FFT algorithm was first published by Cooley & Tukey in
1965.

• In 1969, the 2048 point analysis of a seismic data trace took
over 13 hours. Using the FFT, the same task on the same
machine took 2.4 seconds.

• The FFT is, by far, the most common frequency analysis
algorithm used in programs such as Matlab.

10
Engr325, Fourier Series and Transforms

Example - Sample Waveform with t = 5s

Example - Sample Waveform with t = 2s

11
Engr325, Fourier Series and Transforms

Example - Sample Waveform with t = 1s

+

+

Composite Waveform

12
Engr325, Fourier Series and Transforms

Fourier Transform Information

A Little Video Help

• Graphical Depiction of Fourier Series (watch first 10 minutes)

• Introduction to Fourier Transform

https://www.youtube.com/watch?v=r18Gi8lSkfM
https://www.youtube.com/watch?v=1JnayXHhjlg

13
Engr325, Fourier Series and Transforms

Notes on the Fourier Transform

• The FFT takes, as inputs, a vector of discrete points
representing magnitudes in the time domain.

• The FFT returns a set of complex numbers containing
magnitude and phase information in the frequency domain.
– Note that the data is duplicated from the midpoint on, actually mirrored

about the x-axis since it returns values for frequencies between
–infinity and +infinity.

• Sampling rate issues
– Sampling too slow.
– Sampling too fast

• Possibility of not acquiring an entire period of the lowest frequencies.

• FFT illustration via Matlab.

Matlab Code

% FFT Example
% Revision 3.0 Curt Nelson 1/28/2020
% Creates functions of time and explores various fft implementations
clear all;
clear plot;

% Calculate the number of time samples (1000 in this case).
start_time = 0;
end_time = .01; % 10 milli-seconds
delta_time = 1e-5; % 10 micro-seconds
number_time_samples = (end_time - start_time)/delta_time; % 1000 points

% Create the time vector for x-axis (1000 data points)
time_vec = start_time:delta_time:end_time;

14
Engr325, Fourier Series and Transforms

Matlab Code
% The sampling rate is 1/delta_time or 100,000 samples/second
sampling_rate = 1/delta_time;

% Next create the time domain function with a frequency of 200Hz, resulting
% in a period of 1/frequency or 5 milli-seconds.
freq = 200;
period = 1/freq;
time_function = sin(2*pi*freq*time_vec);

% Since we are sampling from 0 to 10ms, we should see 2 cycles
plot(time_vec,time_function);
title('Time Function with 1000 Data Points');
ylabel('volts');
xlabel('time - seconds');
grid on;
pause;

time_function = sin(2*pi*200*x1t)

15
Engr325, Fourier Series and Transforms

Matlab Code

% Now do an FFT on this time domain function
% fft_results contain a complex number pair for each sample
fft_results = fft(time_function);

% Create the x axis for frequencies starting at the DC value (0 Hz)
dc_value = 0;

% We only need to plot the first half of the frequencies because the fft returns
% the same data folded over on itself at maxfreq/2
% Frequency spacing is the sampling rate / by the number of samples and is
% the frequency resolution on the x axis.
freq_spacing = sampling_rate/number_time_samples;

% Maximum frequency for the fft is (sampling rate/2) – freq_spacing
freq_max = (sampling_rate/2) - freq_spacing;

FFT Matlab Code
% Next, create the x-axis points (0 - 49,900 in increments of 100Hz)
freq_plot_xaxis = dc_value:freq_spacing:freq_max;

% This results in (number of time samples/2) or 500 frequencies
number_freq_samples = number_time_samples/2;

% The magnitude of the fft must be computed from the complex fft_results
magnitude = abs(fft_results);

% Normalize magnitude by dividing by the number of frequency samples
nor_magnitude = magnitude/number_freq_samples;

% Plot the first 30 frequencies using red circles
plot(freq_plot_xaxis(1:30),nor_magnitude(1:30),'ro');
pause;

16
Engr325, Fourier Series and Transforms

FFT of sin(2*pi*200*t)

FFT Matlab Code
% Next, create a signal of two frequencies with different magnitudes
new_sig = sin(2*pi*100*time_vec) + 2*sin(2*pi*200*time_vec);
plot(time_vec,new_sig);
pause;

17
Engr325, Fourier Series and Transforms

FFT of sin(2*pi*100*time_vec) + 2*sin(2*pi*200*time_vec)

% Perform the fft and plot
fft_results = fft(new_sig);
magnitude = abs(fft_results);
nor_magnitude = magnitude/number_freq_samples;
plot(freq_plot_xaxis(1:30),nor_magnitude(1:30),'ro');
pause;

FFT Matlab Code
% Finally, lets add eight more frequencies with various magnitudes and plot
new_sig = new_sig + .5*sin(2*pi*300*time_vec);
new_sig = new_sig + 2*sin(2*pi*400*time_vec);
new_sig = new_sig + 3*sin(2*pi*500*time_vec);
new_sig = new_sig + sin(2*pi*600*time_vec);
new_sig = new_sig + 2*sin(2*pi*700*time_vec);
new_sig = new_sig + .5*sin(2*pi*800*time_vec);
new_sig = new_sig + sin(2*pi*900*time_vec);
new_sig = new_sig + 3*sin(2*pi*1000*time_vec);

plot(time_vec,new_sig); % Plot the function
pause;

18
Engr325, Fourier Series and Transforms

f(t) Composed of 10 Frequencies

Matlab Code
% Perform the fft and plot
fft_results = fft(new_sig);
magnitude = abs(fft_results);
nor_magnitude = magnitude/number_freq_samples;
plot(freq_plot_xaxis(1:30),nor_magnitude(1:30),'ro');
pause;

