

Fourier Series and

 Fourier TransformsEngr325
Instrumentation

Dr Curtis Nelson

This Lecture

- Fourier series.
- Fourier transforms.

A/D Converter Board

http://www.mstarlabs.com/dataacquisition/840/840spec.html

Instrumentation System

Temperature, Light, Displacement,
Position, Vibration, Strain, Angle,
Velocity, Acceleration, Flow rate,
Pressure, Viscosity, Heart Rate, Etc.

Digital Acquisition System

- Computers are nearly always in the middle of any instrumentation system to provide a complete interface with analog sensors and output devices.

Digital control system with analog I/O

Signal Processing

- The big question now is: "What information do we want to extract from the signal that we have acquired?"
- Amplitude.
- Frequency.
- Timing.
- Phase.
- Etc.
- Let's focus on Frequency today.

A Sine Wave

A Sampled Sine Wave Signal

$5 * \sin (2 \pi 4 \mathrm{t})$
Amplitude $=5$
Frequency $=4 \mathrm{~Hz}$
Sampling rate $=256$
samples/second
Sampling duration
$=1$ second

An Undersampled Signal

The Nyquist Frequency

- The Nyquist frequency is equal to one-half of the sampling frequency.
- The Nyquist frequency is the highest frequency that can be measured in a signal.
- In other words - you MUST sample at least twice as fast as the fastest frequency in the signal you wish to capture.
- And, how do you determine what that maximum frequency is? Or more generally, how do you determine all of the frequencies comprising the signal you are capturing?
- We will answer the last question by going in reverse, i.e. we will learn how to create a signal composed of multiple frequencies.

Fourier Series

- Fourier Series (English pronunciation: /'foərieI) is a way to represent a wave-like function as the sum of simple sine waves. More formally, it decomposes any periodic function or periodic signal into the sum of a (possibly infinite) set of sine and cosine functions.

$$
\begin{align*}
& A_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} y(t) d t \\
& A_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \cos n \omega t d t \tag{2.13}\\
& B_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \sin n \omega t d t
\end{align*}
$$

where $n=1,2,3, \ldots$, and $T=2 \pi / \omega$ is the period of $y(t)$. The trigonometric series that results from these coefficients is a Fourier series and may be written as

Alternative Mathematical Representations

$$
y(t)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \omega t+B_{n} \sin n \omega t\right)
$$

may be written as

$$
y(t)=A_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega t-\phi_{n}\right)
$$

or

$$
y(t)=A_{0}+\sum_{n=1}^{\infty} C_{n} \sin \left(n \omega t+\phi_{n}^{*}\right)
$$

where

$$
\begin{aligned}
& C_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}} \\
& \tan \phi_{n}=\frac{B_{n}}{A_{n}} \text { and } \tan \phi_{n}^{*}=\frac{A_{n}}{B_{n}}
\end{aligned}
$$

Fourier Series

- Introduction
- https://www.youtube.com/watch?v=UKHBWzoOKsY
- Frequency filtering
- https://www.youtube.com/watch?v=JndvN1ngSi4
- Matlab demo

Fourier Series Symmetry

- If $f(t)=f(-t)$, then $f(t)$ is said to be an even function and all the b_{n} terms $=0$. In other words, $f(t)$ is mirrored about the y-axis, like the cosine function.

- If $f(t)=-f(-t)$, then $f(t)$ is said to be an odd function and all a_{n} terms (including the dc value) $=0$. The sine function is an example.

Fourier Series Example

- Find the Fourier Series for the following waveform. Set $V_{m}=1$ and $T=2 \pi$. See the Matlab file fourier series square. m on the course web page for implementation.

$$
v(t)=\sum_{n=1}^{N} \frac{4}{n \pi} \sin (n t)
$$

The Fourier Transform

- A transform takes one function (or signal) and turns it into another function (or signal).
- Continuous Fourier and Inverse Fourier Transforms:

$$
\begin{aligned}
& H(f)=\int_{-\infty}^{\infty} h(t) e^{2 \pi i f t} d t \\
& h(t)=\int_{-\infty}^{\infty} H(f) e^{-2 \pi i f t} d f
\end{aligned}
$$

- Note that the transforms contain complex numbers.

The Discrete Fourier Transform

- Because we have computers in the mix and deal with discrete samples of information, mathematicians developed the Discrete Fourier Transform (DFT):

$$
\begin{aligned}
& H_{n}=\sum_{k=0}^{N-1} h_{k} e^{2 \pi i k n / N} \\
& h_{k}=\frac{1}{N} \sum_{n=0}^{N-1} H_{n} e^{-2 \pi i k n / N}
\end{aligned}
$$

- The $D F T$ is also complex in nature.

Fast Fourier Transform

- You have probably heard about the The Fast Fourier Transform ($F F T$). The $F F T$ is an efficient algorithm for performing a Discrete Fourier Transform.
- The FFT algorithm was first published by Cooley \& Tukey in 1965.
- In 1969, the 2048 point analysis of a seismic data trace took over 13 hours. Using the FFT, the same task on the same machine took 2.4 seconds.
- The FFT is, by far, the most common frequency analysis algorithm used in programs such as Matlab.

Example - Sample Waveform with $\tau=2 \mathrm{~s}$

A Little Video Help

- Graphical Depiction of Fourier Series (watch first 10 minutes)
- Introduction to Fourier Transform

Notes on the Fourier Transform

- The FFT takes, as inputs, a vector of discrete points representing magnitudes in the time domain.
- The FFT returns a set of complex numbers containing magnitude and phase information in the frequency domain.
- Note that the data is duplicated from the midpoint on, actually mirrored about the x -axis since it returns values for frequencies between -infinity and +infinity.
- Sampling rate issues
- Sampling too slow.
- Sampling too fast
- Possibility of not acquiring an entire period of the lowest frequencies.
- FFT illustration via Matlab.

Matlab Code

[^0]
Matlab Code

$\%$ The sampling rate is $1 /$ delta_time or 100,000 samples/second sampling_rate $=1 /$ delta_time;
$\%$ Next create the time domain function with a frequency of 200 Hz , resulting $\%$ in a period of $1 /$ frequency or 5 milli-seconds.
freq $=200$;
period $=1 /$ freq;
time_function $=\sin \left(2 * \mathrm{pi}^{*}\right.$ freq*$*$ time_vec $)$;
\% Since we are sampling from 0 to 10 ms , we should see 2 cycles plot(time_vec,time_function);
title('Time Function with 1000 Data Points');
ylabel('volts');
xlabel('time - seconds');
grid on;
pause;

$$
\text { time_function }=\sin \left(2^{*} \mathrm{pi}^{*} 200^{*} x 1 \mathrm{t}\right)
$$

Matlab Code

\% Now do an FFT on this time domain function
$\% \mathrm{fft}$ results contain a complex number pair for each sample
fft_results $=$ fft(time_function);
\% Create the x axis for frequencies starting at the DC value $(0 \mathrm{~Hz})$
dc_value $=0$;
\% We only need to plot the first half of the frequencies because the fft returns $\%$ the same data folded over on itself at maxfreq $/ 2$
$\%$ Frequency spacing is the sampling rate / by the number of samples and is $\%$ the frequency resolution on the x axis.
freq_spacing $=$ sampling_rate/number_time_samples;
\% Maximum frequency for the fft is (sampling rate/2) - freq_spacing freq_max $=($ sampling_rate $/ 2)$ - freq_spacing;

FFT Matlab Code

$\%$ Next, create the x-axis points ($0-49,900$ in increments of 100 Hz) freq_plot_xaxis = dc_value:freq_spacing:freq_max;
$\%$ This results in (number of time samples/2) or 500 frequencies number_freq_samples $=$ number_time_samples $/ 2$;
\% The magnitude of the fft must be computed from the complex fft_results magnitude $=$ abs(fft_results);
\% Normalize magnitude by dividing by the number of frequency samples nor_magnitude $=$ magnitude/number_freq_samples;
\% Plot the first 30 frequencies using red circles
plot(freq_plot_xaxis(1:30),nor_magnitude($1: 30$),'ro');
pause;

FFT of $\sin (2 * p i * 200 * t)$

FFT Matlab Code

\% Next, create a signal of two frequencies with different magnitudes new_sig $=\sin (2 *$ pi* $100 *$ time_vec $)+2 * \sin (2 *$ pi*200*time_vec $)$; plot(time_vec,new_sig);
pause;

FFT of $\sin \left(2 * \mathrm{pi} * 100 * t i m e _v e c\right)+2 * \sin \left(2 * \mathrm{pi} * 200 * t i m e _v e c\right)$

\% Perform the fft and plot
fft_results = fft(new_sig);
magnitude $=$ abs(fft_results);
nor_magnitude $=$ magnitude/number_freq_samples;
plot(freq_plot_xaxis(1:30),nor_magnitude(1:30),'ro');
pause;

FFT Matlab Code

\% Finally, lets add eight more frequencies with various magnitudes and plot new_sig $=$ new_sig $+.5 * \sin \left(2 *\right.$ pi $^{*} 300 *$ time_vec $) ;$
new_sig $=$ new_sig $+2 * \sin \left(2 *\right.$ pi $^{*} 400 *$ time_vec $) ;$
new_sig $=$ new_sig $+3 * \sin (2 *$ pi*500*time_vec $)$;
new_sig $=$ new_sig $+\sin (2 *$ pi*600*time_vec $) ;$
new_sig $=$ new_sig $+2 * \sin (2 *$ pi*700*time_vec $)$;
new_sig $=$ new_sig $+.5 * \sin (2 *$ pi*800*time_vec $)$;
new_sig $=$ new_sig $+\sin (2 *$ pi*900*time_vec $)$;
new_sig $=$ new_sig $+3 * \sin (2 *$ pi*1000*time_vec $) ;$
plot(time_vec,new_sig); $\%$ Plot the function
pause;

$f(t)$ Composed of 10 Frequencies

Matlab Code

\% Perform the fft and plot
fft_results = fft(new_sig);
magnitude $=$ abs(fft_results);
nor_magnitude $=$ magnitude/number_freq_samples;
plot(freq_plot_xaxis(1:30),nor_magnitude(1:30),'ro');
pause;

[^0]: \% FFT Example
 \% Revision 3.0 Curt Nelson 1/28/2020
 $\%$ Creates functions of time and explores various fft implementations
 clear all;
 clear plot;
 \% Calculate the number of time samples (1000 in this case).
 start_time $=0$;
 end_time $=.01 ; \quad \% 10$ milli-seconds
 delta_time $=1 \mathrm{e}-5 ; \quad \% 10$ micro-seconds
 number_time_samples $=($ end_time - start_time $) /$ delta_time; $\% 1000$ points
 \% Create the time vector for x -axis (1000 data points)
 time_vec = start_time:delta_time:end_time;

